consensus
  • README
  • Blockchain Consensus Encyclopedia Infographic
  • CONTRIBUTING
  • Introduction
  • Blockchain Consensus?
  • Glossary
  • Categorizing consensus
  • Chain-based Proof of Work
    • Proof of Work (PoW)
    • Proof of Meaningful Work (PoMW)
    • Hybrid Proof of Work (HPoW)
    • Proof of Work time (PoWT)
    • Delayed Proof of Work (dPoW)
    • Proof of Edit Distance
    • ePoW: equitable chance and energy-saving.
    • Semi-Synchronous Proof of Work (SSPoW)
  • Chain-based Proof of Stake
    • Delegated Proof-of-Contribution (DPoC)
    • Secure Proof of Stake (SPoS)
    • Hybrid PBFT/Aurand
    • Proof of Stake (PoS)
    • Delegated Proof of Stake (DPoS)
    • Proof of Stake Time (PoST)
    • Proof of stake Boo (PoS Boo)
    • High Interest Proof of Stake (HiPoS)
    • Asset PoS (APoS )
    • Traditional Proof of Stake / Tiered Proof Of Stake (TPOS)
    • Casper the Friendly Finality Gadget (FFG)
    • Correct By Construction (CBC) Casper
    • Variable Delayed Proof of Stake (vDPOS)
    • Proof of Stake Velocity
    • Magi's Proof of Stake (mPoS)
    • Leased Proof of Stake (LPoS)
    • Delegated Proof of Importance (DPoI)
    • Leasing Proof of Stake (PoS/LPoS)
  • Chain-based Proof of Capacity/Space
    • Proof of Process
    • Proof of capacity (PoC)
    • Proof of Signature (PoSign)
    • Proof of Retrievability (POR)
    • Proof of Location
    • Proof of Reputation (PoR)
    • Proof of Proof (PoP)
    • Proof of History
    • Proof of Existence
    • Proof of Research (DPoR)
    • Proof of Activity
    • Proof of Weight (PoWeight)
    • Proof of Zero (PoZ)
    • Proof of Importance
    • Proof of Care (PoC)
    • Raft
    • Proof of Value (PoV)
    • Proof of Participation (PoP)
    • Proof of Believability
    • Proof of Stake (POS) / Proof of Presence (PoP)
    • Proof of Ownership
    • Proof of Quality (PoQ)
    • Proof of Space (PoC)
  • Chain-based Hybrid models
    • GRANDPA
    • Proof of authority (PoA)
    • Ethereum Proof of Authority
    • Limited Confidence Proof-of-Activity (LCPoA)
    • Proof of Work (PoW) / Nexus Proof of State (nPoS) or Nexus Proof of Holding (nPOH)
    • Proof of Activity
    • Proof of Work (PoW) / Proof of Stake (PoS) / Proof Of Care (PoC)
    • Proof of work (PoW) / High Interest Proof of Stake (HiPoS)
    • Proof of Work (PoW) / PoM / PoSII
  • Chain-based Proof of Burn
    • Proof of Processed Payments (PoPP)
    • Proof of Burn (PoB)
    • Proof of Time
    • Proof of Stake (PoS) / Proof of Disintegration (PoD)
  • Chain-based Trusted computing algorithms
    • Proof of Elapsed Time (PoET)
  • Chain-based PBFT and BFT-based Proof of Stake
    • leaderless BFT dual ledger architecture
    • Albatross
    • asynchronous BFT protocol
    • BFTree
    • Byzantine Fault Tolerance (BFT)
    • Delegated Byzantine Fault Tolerance
    • Federated Byzantine Agreement
    • HotStuff
    • LibraBFT
    • Modified Federated Byzantine Agreement (mFBA)
    • Ouroboros
    • Practical Byzantine Fault Tolerance
  • Chain-based others
    • Proof of Trust (PoT)
    • Proof of Devotion
    • Snowglobe
    • Avalanche
    • Serialization of Proof-of-work Events (Spectre)
    • Scrypt-adaptive-N (ASIC resistant)
  • Chain-based DAG
    • BlockFlow
    • Direct Acyclic Graph Tangle (DAG)
    • Hashgraph
    • Block-lattice - Directed Acyclic Graphs (DAGs)
  • Magi's proof-of-work (mPoW)
  • Common Attacks
  • Performance indicators
  • ThresholdRelay
  • Holochain
Powered by GitBook
On this page
  • Used in
  • Whitepaper
  1. Chain-based others

Proof of Trust (PoT)

A Proof-of-Trust Consensus Protocol for Enhancing Accountability in Crowdsourcing Services

PreviousChain-based othersNextProof of Devotion

Last updated 5 years ago

Incorporating accountability mechanisms in online services requires effective trust management and immutable, traceable source of truth for transaction evidence. The emergence of the blockchain technology brings in high hopes for fulfilling most of those requirements. However, a major challenge is to find a proper consensus protocol that is applicable to the crowdsourcing services in particular and online services in general. Building upon the idea of using blockchain as the underlying technology to enable tracing transactions for service contracts and dispute arbitration, this paper proposes a novel consensus protocol that is suitable for the crowdsourcing as well as the general online service industry. The new consensus protocol is called “Proof-of-Trust” (PoT) consensus; it selects transaction validators based on the service participants’ trust values while leveraging RAFT leader election and Shamir's secret sharing algorithms. The PoT protocol avoids the low throughput and resource intensive pitfalls associated with Bitcoin’s “Proof-of-Work” (PoW) mining, while addressing the scalability issue associated with the traditional Paxos-based and Byzantine Fault Tolerance (BFT)-based algorithms. In addition, it addresses the unfaithful behaviors that cannot be dealt with in the traditional BFT algorithms. The paper demonstrates that our approach can provide a viable accountability solution for the online service industry.

Authors

, Department of Computing, Macquarie University, Sydney, NSW, Australia , Department of Computing, Macquarie University, Sydney, NSW, Australia , Department of Computing, Macquarie University, Sydney, NSW, Australia , Department of Computing, Macquarie University, Sydney, NSW, Australia , Department of Computing, Macquarie University, Sydney, NSW, Australia , Hefei University of Technology, Hefei, China

A Proof-of-Trust consensus protocol for enhancing acceountability in crowdsourcing services. In: IEEE Transactions on Services Computing. 2019 ; Vol. 12, No. 3. pp. 429-445.

Used in

Whitepaper

Jun Zou
Bin Ye
Lie Qu
Yan Wang
Mehmet A. Orgun
Lei Li
https://theproofoftrust.com/
https://ieeexplore.ieee.org/document/8332496/