consensus
  • README
  • Blockchain Consensus Encyclopedia Infographic
  • CONTRIBUTING
  • Introduction
  • Blockchain Consensus?
  • Glossary
  • Categorizing consensus
  • Chain-based Proof of Work
    • Proof of Work (PoW)
    • Proof of Meaningful Work (PoMW)
    • Hybrid Proof of Work (HPoW)
    • Proof of Work time (PoWT)
    • Delayed Proof of Work (dPoW)
    • Proof of Edit Distance
    • ePoW: equitable chance and energy-saving.
    • Semi-Synchronous Proof of Work (SSPoW)
  • Chain-based Proof of Stake
    • Delegated Proof-of-Contribution (DPoC)
    • Secure Proof of Stake (SPoS)
    • Hybrid PBFT/Aurand
    • Proof of Stake (PoS)
    • Delegated Proof of Stake (DPoS)
    • Proof of Stake Time (PoST)
    • Proof of stake Boo (PoS Boo)
    • High Interest Proof of Stake (HiPoS)
    • Asset PoS (APoS )
    • Traditional Proof of Stake / Tiered Proof Of Stake (TPOS)
    • Casper the Friendly Finality Gadget (FFG)
    • Correct By Construction (CBC) Casper
    • Variable Delayed Proof of Stake (vDPOS)
    • Proof of Stake Velocity
    • Magi's Proof of Stake (mPoS)
    • Leased Proof of Stake (LPoS)
    • Delegated Proof of Importance (DPoI)
    • Leasing Proof of Stake (PoS/LPoS)
  • Chain-based Proof of Capacity/Space
    • Proof of Process
    • Proof of capacity (PoC)
    • Proof of Signature (PoSign)
    • Proof of Retrievability (POR)
    • Proof of Location
    • Proof of Reputation (PoR)
    • Proof of Proof (PoP)
    • Proof of History
    • Proof of Existence
    • Proof of Research (DPoR)
    • Proof of Activity
    • Proof of Weight (PoWeight)
    • Proof of Zero (PoZ)
    • Proof of Importance
    • Proof of Care (PoC)
    • Raft
    • Proof of Value (PoV)
    • Proof of Participation (PoP)
    • Proof of Believability
    • Proof of Stake (POS) / Proof of Presence (PoP)
    • Proof of Ownership
    • Proof of Quality (PoQ)
    • Proof of Space (PoC)
  • Chain-based Hybrid models
    • GRANDPA
    • Proof of authority (PoA)
    • Ethereum Proof of Authority
    • Limited Confidence Proof-of-Activity (LCPoA)
    • Proof of Work (PoW) / Nexus Proof of State (nPoS) or Nexus Proof of Holding (nPOH)
    • Proof of Activity
    • Proof of Work (PoW) / Proof of Stake (PoS) / Proof Of Care (PoC)
    • Proof of work (PoW) / High Interest Proof of Stake (HiPoS)
    • Proof of Work (PoW) / PoM / PoSII
  • Chain-based Proof of Burn
    • Proof of Processed Payments (PoPP)
    • Proof of Burn (PoB)
    • Proof of Time
    • Proof of Stake (PoS) / Proof of Disintegration (PoD)
  • Chain-based Trusted computing algorithms
    • Proof of Elapsed Time (PoET)
  • Chain-based PBFT and BFT-based Proof of Stake
    • leaderless BFT dual ledger architecture
    • Albatross
    • asynchronous BFT protocol
    • BFTree
    • Byzantine Fault Tolerance (BFT)
    • Delegated Byzantine Fault Tolerance
    • Federated Byzantine Agreement
    • HotStuff
    • LibraBFT
    • Modified Federated Byzantine Agreement (mFBA)
    • Ouroboros
    • Practical Byzantine Fault Tolerance
  • Chain-based others
    • Proof of Trust (PoT)
    • Proof of Devotion
    • Snowglobe
    • Avalanche
    • Serialization of Proof-of-work Events (Spectre)
    • Scrypt-adaptive-N (ASIC resistant)
  • Chain-based DAG
    • BlockFlow
    • Direct Acyclic Graph Tangle (DAG)
    • Hashgraph
    • Block-lattice - Directed Acyclic Graphs (DAGs)
  • Magi's proof-of-work (mPoW)
  • Common Attacks
  • Performance indicators
  • ThresholdRelay
  • Holochain
Powered by GitBook
On this page
  • Pros
  • Used in
  1. Chain-based Proof of Stake

Proof of stake Boo (PoS Boo)

PreviousProof of Stake Time (PoST)NextHigh Interest Proof of Stake (HiPoS)

Last updated 6 years ago

PoS Boo is a PoS scheme based on PoS Casper.Th Casper scheme improves the most on “POSv3” with the introduction of a risk factor for malicious stakers. The system is progressive in a way that makes it considerably difficult to execute attacks like the 51% attack; you would need a majority of all minted coins, and you will also face the potential to lose them all when launching such an attack. The finality is mainly determined by stake and risk factors,

Pros

  • hard to execute a attack successfully even with 51% of circulation,

  • solves transaction censoring. With PoW, a block miner can “choose” not to mine a block containing certain addresses, thereby censoring that address from the network. Since block creators are chosen at random and validators are global with this PoS scheme, it is really hard to censor addresses from the network (with the added bonus that if you try to force the network, you will most likely lose your stake).

Used in

SHIELD